Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available November 16, 2025
-
Abstract For a finite group , a ‐crossed braided fusion category is a ‐graded fusion category with additional structures, namely, a ‐action and a ‐braiding. We develop the notion of ‐crossed braided zesting: an explicit method for constructing new ‐crossed braided fusion categories from a given one by means of cohomological data associated with the invertible objects in the category and grading group . This is achieved by adapting a similar construction for (braided) fusion categories recently described by the authors. All ‐crossed braided zestings of a given category are ‐extensions of their trivial component and can be interpreted in terms of the homotopy‐based description of Etingof, Nikshych, and Ostrik. In particular, we explicitly describe which ‐extensions correspond to ‐crossed braided zestings.more » « less
-
null (Ed.)We develop categorical and number-theoretical tools for the classification of super-modular categories. We apply these tools to obtain a partial classification of super-modular categories of rank [Formula: see text]. In particular we find three distinct families of prime categories in rank [Formula: see text] in contrast to the lower rank cases for which there is only one such family.more » « less
An official website of the United States government
